2025-01-28 15:47:24 +08:00

1199 lines
37 KiB
Rust

use std::{net::SocketAddr, sync::atomic::Ordering, time::Duration};
use crate::tcp::NatType;
use crate::{network::TunTapPacketHandler, utils::mac_to_string};
use crate::{
config::{NULL_MAC, REGISTER_INTERVAL},
pb::{
encode_to_tcp_message, encode_to_udp_message, SdlData, SdlEmpty, SdlPeerInfo, SdlQueryInfo,
SdlRegister, SdlRegisterAck, SdlStunProbeReply,
},
tcp::{get_tcp_conn, PacketType},
utils::{send_to_sock, Socket},
};
use etherparse::Ethernet2Header;
use num_enum::TryFromPrimitive;
use prost::Message;
use sdlan_sn_rs::utils::BROADCAST_MAC;
use sdlan_sn_rs::{
config::{AF_INET, AF_INET6},
peer::{is_sdlan_sock_equal, SdlanSock, V6Info},
utils::{
aes_decrypt, get_current_timestamp, get_sdlan_sock_from_socketaddr, is_multi_broadcast,
Mac, Result, SDLanError,
},
};
use std::sync::Arc;
use tracing::{debug, error, info};
use super::{EdgePeer, Node};
pub async fn read_and_parse_packet(
eee: &'static Node,
sock: &Socket,
timeout: Option<Duration>,
_is_multicast_sock: bool,
// cancel: CancellationToken,
) -> Result<()> {
let mut buf = vec![0; 3000];
let res;
if timeout.is_some() {
tokio::select! {
_ = tokio::time::sleep(timeout.unwrap()) => {
return Err(SDLanError::NormalError("timeouted"));
}
r = sock.recv_from(&mut buf) => {
res=r;
}
}
} else {
res = sock.recv_from(&mut buf).await;
}
debug!("read_and_parse packet, got packet");
// let res = sock.recv_from(&mut buf).await;
match res {
Ok((0, _)) => {
// received 0
error!("received zero bytes");
// return Ok(())
}
Err(e) => {
// error occured
error!("receive error occured: {:?}", e);
}
Ok((size, from)) => {
// size > 0
/*
if is_multicast_sock {
println!(
"xxxx got packet from multicast sock from {}",
from.to_string()
);
}
*/
buf.truncate(size);
match handle_packet(eee, from, &buf).await {
Ok(_) => {}
Err(e) => {
error!("failed to handle_packet: {:?}", e);
}
}
}
}
Ok(())
}
pub async fn handle_packet(eee: &'static Node, addr: SocketAddr, buf: &[u8]) -> Result<()> {
if buf.len() < 1 {
return Err(SDLanError::NormalError("buf length error"));
}
let Ok(pkt_type) = PacketType::try_from(buf[0]) else {
return Err(SDLanError::NormalError("invalid packet type"));
};
match pkt_type {
PacketType::Data => {
debug!("got data");
let from_sock = get_sdlan_sock_from_socketaddr(addr).unwrap();
debug!("[PPP]Rx data from {}", from_sock.to_string());
if !eee.is_authorized() {
error!("dropping PACKET received before authorized");
return Ok(());
}
let Ok(data) = SdlData::decode(&buf[1..]) else {
error!("failed to decode to SDLData");
return Err(SDLanError::NormalError("failed to decode to SDLData"));
};
let Ok(src_mac) = data.src_mac.clone().try_into() else {
error!("failed to convert src mac");
return Err(SDLanError::NormalError("failed to convert vec to Mac"));
};
// let from_sock = get_sdlan_sock_from_socketaddr(addr).unwrap();
if data.is_p2p {
debug!("[P2P] Rx data from {}", from_sock.to_string());
} else {
debug!(
"[PsP] Rx data from {} via {}",
mac_to_string(&src_mac),
from_sock.to_string()
);
}
if data.is_p2p {
let from_sock = from_sock.deepcopy();
tokio::spawn(async move {
check_peer_registration_needed(
eee,
!data.is_p2p,
src_mac,
NatType::NoNat,
&None,
&from_sock,
)
.await;
});
}
handle_tun_packet(eee, &from_sock, !data.is_p2p, data).await;
}
PacketType::StunProbeReply => {
debug!("got StunProbeReply");
let Ok(reply) = SdlStunProbeReply::decode(&buf[1..]) else {
error!("failed to decode SdlStunReply");
return Ok(());
};
println!("got stun probe reply: {:?}", reply);
eee.send_nat_probe_reply(reply.cookie, reply).await;
}
PacketType::StunReply => {
debug!("got stun reply");
// stun reply, like pong
}
PacketType::Register => {
debug!("got Register");
if !eee.is_authorized() {
error!("dropping REGISTER received before authorized");
return Ok(());
}
let from_sock = get_sdlan_sock_from_socketaddr(addr).unwrap();
let _ = handle_packet_register(eee, &buf[1..], false, &from_sock).await;
}
PacketType::RegisterACK => {
debug!("got RegisterACK");
if !eee.is_authorized() {
error!("dropping REGISTER received before authorized");
return Ok(());
}
let from_sock = get_sdlan_sock_from_socketaddr(addr).unwrap();
let _ = handle_packet_register_ack(eee, &buf[1..], &from_sock).await;
}
other => {
error!("udp not processing {:?}", other);
}
}
/*
let pkt_type = buf[0].into();
debug!("got packet {} bytes", buf.len());
let (cmn, slice) = packet::decode_common(&buf)?;
println!("got packet: {:?}", cmn.pc);
if !eee.is_authorized() {
error!("unauthorized, returning");
return Ok(());
}
let from_sn = (cmn.flags & config::SDLAN_FLAGS_FROM_SN) != 0;
let from_sock = get_sdlan_sock_from_socketaddr(addr).unwrap();
if from_sn {
if !eee.sn_is_known(&from_sock) {
error!("drop incoming data from unknown supernode");
return Ok(());
}
}
let res = match cmn.pc {
PacketType::PKTPacket => {
// handle packet
handle_packet_packet(eee, cmn, slice, from_sn, &from_sock).await
}
PacketType::PKTRegister => {
// handle register from other peer
handle_packet_register(eee, slice, from_sn, &from_sock).await
}
PacketType::PKTRegisterACK => {
// handle register ack from other peer
handle_packet_register_ack(eee, slice, &from_sock).await
}
PacketType::PKTRegisterSuperAcknowledge => {
// handle register super acknowledge
handle_packet_register_super_acknowledge(eee)
}
PacketType::PKTRegisterSuperACK => {
// handle register super ack
handle_packet_register_super_ack(eee, cmn, slice)
}
PacketType::PKTRegisterSuperNAK => {
// handle register super nak
handle_packet_register_super_nak(eee, cmn, slice)
}
PacketType::PKTPeerInfo => {
// handle peer info from sn
handle_packet_peer_info(eee, slice).await
}
PacketType::PKTCommand => {
// handle command
Ok(())
}
other => {
error!("unknown packet {:?}", other);
Ok(())
}
};
if let Err(e) = res {
error!("handle packet error occured: {}", e.as_str());
}
*/
Ok(())
}
pub async fn handle_packet_peer_info(
eee: &'static Node,
// cmn: Common<'_>,
body: &[u8],
//sender_sock: &SdlanSock,
) -> Result<()> {
let Ok(pi) = SdlPeerInfo::decode(body) else {
error!("failed to decode PEER_INFO");
return Ok(());
};
debug!("got peer info: {:?}", pi);
let Ok(dst_mac) = pi.dst_mac.try_into() else {
error!("mac is null");
return Ok(());
};
if pi.v4_info.is_none() {
error!("PEER's v4_info is none");
return Ok(());
}
let v4 = pi.v4_info.unwrap();
let Ok(v4_u32) = v4.v4.try_into() else {
error!("failed to convert v4");
return Ok(());
};
let remote_nat_byte = v4.nat_type as u8;
let remote_nat = match NatType::try_from(remote_nat_byte) {
Ok(nat) => nat,
Err(_) => NatType::Invalid,
};
let mut v6: [u8; 16] = [0; 16];
let mut v6_port = 0;
if let Some(v6_info) = pi.v6_info {
if let Ok(v6_bytes) = v6_info.v6.as_slice().try_into() {
v6 = v6_bytes;
v6_port = v6_info.port as u16;
}
}
// let src_ip = u32::from_be_bytes(v4_u32);
if dst_mac == NULL_MAC {
// pong from sn
} else {
let pending = eee.pending_peers.peers.get_mut(&dst_mac);
match pending {
Some(mut v) => {
let sock = SdlanSock {
family: AF_INET,
port: v4.port as u16,
v4: v4_u32,
v6: [0; 16],
};
v.nat_type = remote_nat;
v.sock = sock.deepcopy();
// v.sock = sock.deepcopy();
info!(
"Rx PEERINFO for {}: is at {}",
mac_to_string(&dst_mac),
sock.to_string()
);
let mut v6_info = None;
if v6_port != 0 {
v6_info = Some(V6Info { port: v6_port, v6 })
}
send_register(eee, remote_nat, &sock, dst_mac, &v6_info).await;
}
None => {
debug!("Rx PEERINFO unknown peer: {}", mac_to_string(&dst_mac));
}
}
}
Ok(())
}
/*
fn handle_packet_register_super_nak(eee: &Node, _cmn: Common<'_>, slice: &[u8]) -> Result<()> {
let nak: RegisterSuperNAK = serde_json::from_slice(slice)?;
if nak.src_ip == eee.device_config.get_ip() {
eee.set_authorized(false, Vec::new());
error!("unauthorized");
} else {
eee.known_peers.delete_peer_with_ip(&nak.src_ip);
eee.pending_peers.delete_peer_with_ip(&nak.src_ip);
}
Ok(())
}
*/
/*
fn handle_packet_register_super_ack(eee: &Node, _cmn: Common<'_>, slice: &[u8]) -> Result<()> {
debug!("handling REGISTER_SUPER_ACK");
let ack: RegisterSuperACK = serde_json::from_slice(slice)?;
if ack.dev_addr.net_addr != 0 && ack.dev_addr.net_bit_len != 0 {
// i'm authorized or moved;
// eee.device
eee.device_config
.set_ip(ack.dev_addr.net_addr, ack.dev_addr.net_bit_len);
debug!(
"ip addr assigned: {}/{}",
ip_to_string(&ack.dev_addr.net_addr),
ack.dev_addr.net_bit_len
)
}
let Ok(private_key) = load_private_key_file(".client/id_rsa") else {
error!("failed to load private key");
return Err(SDLanError::NormalError("failed to load private key"));
};
let encrypt_key = rsa_decrypt(&private_key, &ack.encrypted_key)?;
let header_key = rsa_decrypt(&private_key, &ack.header_key)?;
eee.config
.super_attempts
.store(SUPER_ATTEMPTS_DEFAULT, Ordering::Relaxed);
eee.stats
.last_sup
.store(get_current_timestamp(), Ordering::Relaxed);
debug!("changed to Authorized");
eee.set_authorized(true, encrypt_key);
eee.device.reload_config(&eee.device_config);
eee.known_peers.clear();
eee.pending_peers.clear();
Ok(())
}
*/
/*
fn handle_packet_register_super_acknowledge(
eee: &Node,
// cmn: Common<'_>,
// slice: &[u8],
) -> Result<()> {
debug!("handling REGISTER_SUPER_ACKNOWLEDGE");
// TODO: should check the common and the slice content.
eee.config
.super_attempts
.store(SUPER_ATTEMPTS_DEFAULT, Ordering::Relaxed);
eee.stats
.last_sup
.store(get_current_timestamp(), Ordering::Relaxed);
Ok(())
}
*/
async fn handle_packet_register_ack(
eee: &Node,
// cmn: Common<'_>,
body: &[u8],
sender_sock: &SdlanSock,
) -> Result<()> {
let Ok(ack) = SdlRegisterAck::decode(body) else {
error!("failed to decode REGISTER_ACK");
return Ok(());
};
let origin_sender = sender_sock;
let Ok(src_mac) = ack.src_mac.try_into() else {
error!("failed to get src_mac");
return Ok(());
};
let Ok(dst_mac) = ack.dst_mac.try_into() else {
error!("failed to get dst_mac");
return Ok(());
};
let via_multicast = is_multi_broadcast(&dst_mac);
if via_multicast && src_mac == eee.device_config.get_mac() {
debug!("skipping register ack from self");
return Ok(());
}
debug!(
"Rx REGISTER ACK from {} [{}] to {} via {}",
mac_to_string(&src_mac),
origin_sender.to_string(),
mac_to_string(&dst_mac),
sender_sock.to_string(),
);
peer_set_p2p_confirmed(eee, src_mac, sender_sock);
Ok(())
}
async fn handle_packet_register(
eee: &'static Node,
// cmn: Common<'_>,
body: &[u8],
from_sn: bool,
sender_sock: &SdlanSock,
) -> Result<()> {
if !eee.is_authorized() {
error!("drop register due to not authed");
return Ok(());
}
let Ok(reg) = SdlRegister::decode(body) else {
error!("failed to decode REGISTER");
return Ok(());
};
let origin_sender = sender_sock;
let Ok(src_mac) = reg.src_mac.clone().try_into() else {
error!("[REGISTER] failed to get src_mac");
return Ok(());
};
let Ok(dst_mac) = reg.dst_mac.clone().try_into() else {
error!("[REGISTER] failed to get dst_mac");
return Ok(());
};
let via_multicast = is_multi_broadcast(&dst_mac);
if via_multicast && src_mac == eee.device_config.get_mac() {
debug!("skipping register from self");
return Ok(());
}
let mut remote_nat = NatType::NoNat;
if !from_sn {
info!(
"[P2P] Rx REGISTER from {}, deleting from pending",
sender_sock.to_string()
);
if let Some((_, v)) = eee.pending_peers.delete_peer_with_mac(&src_mac) {
remote_nat = v.get_nat_type();
}
send_register_ack(eee, origin_sender, &reg).await;
info!("sent back REGISTERACK");
} else {
info!(
"[PsP] Rx REGISTER from {} [{}] to {} via {}",
mac_to_string(&src_mac),
mac_to_string(&dst_mac),
sender_sock.to_string(),
origin_sender.to_string(),
);
}
// check_peer_registration_needed(eee, from_sn, reg.src_ip, &None, origin_sender).await;
check_peer_registration_needed(eee, from_sn, src_mac, remote_nat, &None, origin_sender).await;
Ok(())
}
/*
async fn handle_packet_packet(
eee: &Node,
cmn: Common<'_>,
body: &[u8],
from_sn: bool,
sender_sock: &SdlanSock,
) -> Result<()> {
if eee.stats.last_sup.load(Ordering::Relaxed) == 0 {
error!("dropping PACKET received before first registration with sn");
return Ok(());
}
let has_sock = cmn.flags & config::SDLAN_FLAGS_SOCKET != 0;
let has_v6 = cmn.flags & config::SDLAN_FLAGS_HAS_V6 != 0;
let pkt = packet::Packet::unmarshal(body, has_sock, has_v6)?;
// let mut orig_sender: &SdlanSock = sender_sock;
// here, the origin sender ref should be checked
// if let Some(ref sk) = pkt.sock {
// orig_sender = sk;
// }
// println!("orig_sender: {:?}", orig_sender);
let mut origin_sender = sender_sock;
if let Some(ref k) = pkt.sock {
origin_sender = k;
}
println!("orig_sender: {:?}", origin_sender);
if !from_sn {
// data from other peer
debug!("[P2P] Rx data from {}", sender_sock.to_string());
eee.pending_peers.peers.remove(&pkt.src_ip);
} else {
// from sn, sock should not be None
debug!(
"[PsP] Rx data from {} (via {})",
origin_sender.to_string(),
sender_sock.to_string()
);
}
check_peer_registration_needed(eee, from_sn, pkt.src_ip, &pkt.v6_info, origin_sender).await;
// handle_tun_packet(eee, from_sn, pkt).await;
Ok(())
}
*/
pub async fn check_peer_registration_needed(
eee: &'static Node,
from_sn: bool,
src_mac: Mac,
remote_nat: NatType,
_v6_info: &Option<V6Info>,
peer_sock: &SdlanSock,
) {
let mut p = eee.known_peers.peers.get(&src_mac);
let last_seen;
let now;
match p {
None => {
debug!("check peer registration needed, not found in known peers");
let _ = register_with_new_peer(eee, from_sn, src_mac, _v6_info, remote_nat, peer_sock)
.await;
return;
// unimplemented!();
}
Some(k) => {
// let mut ipv4_to_ipv6 = false;
now = get_current_timestamp();
if !from_sn {
k.last_p2p.store(now, Ordering::Relaxed);
}
let origin_family = k.sock.family;
if origin_family != peer_sock.family {
return;
}
/*
if peer_sock.family == AF_INET6 && k.sock.read().unwrap().family == AF_INET {
println!("changing to ipv6");
*k.sock.write().unwrap() = peer_sock.deepcopy();
ipv4_to_ipv6 = true;
} else {
println!("already is ipv6");
}
*/
last_seen = k.last_seen.load(Ordering::Relaxed);
// more than 3 seconds
}
}
if now - last_seen > 300 {
check_known_peer_sock_change(eee, from_sn, src_mac, peer_sock, now, false).await;
}
}
async fn check_known_peer_sock_change(
eee: &'static Node,
from_sn: bool,
mac: Mac,
// v6_info: &Option<V6Info>,
// dev_addr: &IpSubnet,
peersock: &SdlanSock,
when: u64,
ipv4_to_ipv6: bool,
) {
if is_multi_broadcast(&mac) {
return;
}
let mut delete_from_known_peers = false;
let remote_nat;
match eee.known_peers.peers.get_mut(&mac) {
Some(p) => {
if !ipv4_to_ipv6 && !is_sdlan_sock_equal(&p.sock, peersock) {
if !from_sn {
info!(
"peer changed: {}: {} -> {}",
mac_to_string(&mac),
&p.sock.to_string(),
peersock.to_string()
);
delete_from_known_peers = true;
remote_nat = p.get_nat_type();
} else {
// from sn, sn could see a different sock with us, just ignore it
return;
}
} else {
p.last_seen.store(when, Ordering::Relaxed);
return;
// from sn, sn could see a different sock with us, just ignore it
}
}
None => return,
}
if delete_from_known_peers {
eee.known_peers.delete_peer_with_mac(&mac);
error!("known peers is deleted");
register_with_new_peer(eee, from_sn, mac, &None, remote_nat, peersock).await;
}
}
async fn register_with_new_peer(
eee: &'static Node,
from_sn: bool,
mac: Mac,
v6_info: &Option<V6Info>,
// dev_addr: &IpSubnet,
remote_nat: NatType,
peersock: &SdlanSock,
) {
let now = get_current_timestamp();
let entry = eee.pending_peers.peers.entry(mac);
let mut new_created = false;
let mut scan = entry.or_insert_with(|| {
new_created = true;
let temp = EdgePeer::new(0, eee.device_config.get_net_bit(), peersock, &None, now);
temp
});
if new_created {
debug!(
"===> new pending {} => {}",
mac_to_string(&mac),
peersock.to_string(),
);
if from_sn {
// should send register to peer
if eee.config.register_ttl == 1 {
/* We are DMZ host or port is directly accessible. Just let peer to send back the ack */
} else if eee.config.register_ttl > 1 {
/*
let mut alter = 16;
if let Ok(ttl) = eee.udp_sock_v4.ttl() {
let mut temp = peersock.deepcopy();
send_register(eee, remote_nat, &temp, mac, v6_info).await;
let _ = eee.udp_sock_v4.set_ttl(eee.config.register_ttl as u32);
while alter > 0 {
temp.port += 1;
send_register(eee, &temp, mac, v6_info).await;
alter -= 1;
}
let _ = eee.udp_sock_v4.set_ttl(ttl);
}
*/
} else {
// Normal STUN
send_register(eee, remote_nat, peersock, mac, v6_info).await;
}
// 发送给sn
send_register(
eee,
remote_nat,
&eee.config.super_nodes
[eee.config.super_node_index.load(Ordering::Relaxed) as usize],
mac,
v6_info,
)
.await;
} else {
// P2P register, send directly
send_register(eee, remote_nat, peersock, mac, v6_info).await;
}
register_with_local_peers(eee).await;
} else {
scan.sock = peersock.deepcopy();
}
scan.last_seen
.store(get_current_timestamp(), Ordering::Relaxed);
}
async fn register_with_local_peers(eee: &'static Node) {
if !eee.config._drop_multicast {
send_register(
eee,
NatType::NoNat,
&eee.multicast_sock,
BROADCAST_MAC,
&None,
)
.await;
}
}
async fn send_register(
eee: &'static Node,
remote_nat: NatType,
sock: &SdlanSock,
mac: Mac,
_v6_info: &Option<V6Info>,
) {
if !eee.config.allow_p2p {
debug!("skipping register as p2p is disabled");
return;
}
let network_id = eee.network_id.load(Ordering::Relaxed);
if network_id == 0 {
error!("not authed");
return;
}
let self_nat = eee.get_nat_type();
let register = SdlRegister {
network_id: network_id,
src_mac: Vec::from(eee.device_config.get_mac()),
// src_ip: eee.device_config.get_ip(),
dst_mac: Vec::from(mac),
// dst_ip: u32::from_be_bytes(sock.v4),
};
let msg = encode_to_udp_message(Some(register), PacketType::Register as u8).unwrap();
let _ = send_to_sock(eee, &msg, sock).await;
if let Some(ref v6_info) = _v6_info {
let _ = send_to_sock(
eee,
&msg,
&SdlanSock {
family: AF_INET6,
port: v6_info.port,
v4: [0; 4],
v6: v6_info.v6,
},
)
.await;
}
let mut need_guess_port = false;
match self_nat {
NatType::PortRestricted => {
if let NatType::Symmetric = remote_nat {
need_guess_port = true;
}
}
NatType::Symmetric => {
if let NatType::PortRestricted = remote_nat {
need_guess_port = true;
}
}
_other => {}
}
if need_guess_port {
println!("need guess port");
}
/*
let mut target_sock_v4 = sock.deepcopy();
tokio::spawn(async move {
for i in 1..=10 {
target_sock_v4.port += i;
let _ = send_to_sock(eee, &msg, &target_sock_v4).await;
tokio::time::sleep(Duration::from_millis(500)).await;
}
for i in 1..=10 {
target_sock_v4.port -= i;
let _ = send_to_sock(eee, &msg, &target_sock_v4).await;
tokio::time::sleep(Duration::from_millis(500)).await;
}
});
*/
/*
let key = eee.get_header_key();
if key.len() > 0 {
if let Ok(cnt) = encode_packet_encrypted(&cmn, &r, key.as_slice()) {
let _ = send_to_sock_v4_and_v6(eee, &cnt, sock, v6_info).await;
}
} else {
error!("not authed");
}
*/
}
async fn handle_tun_packet(
eee: &Node,
_from_sock: &SdlanSock,
_from_sn: bool,
pkt: SdlData, //orig_sender: &SdlanSock
) {
let payload = pkt.data;
let key = eee.get_encrypt_key();
if key.len() == 0 {
// check the encrypt key
error!("packet encrypt key not provided");
return;
}
let origin = aes_decrypt(key.as_slice(), &payload);
if let Err(_e) = origin {
error!("failed to decrypt original data");
return;
}
let data = origin.unwrap();
if let Err(e) = eee
.device
.handle_packet_from_net(&data, key.as_slice())
.await
{
error!("failed to handle packet from net: {}", e.to_string());
}
/*
let msg_size = data.len() as u64;
let Ok(dst_mac) = pkt.dst_mac.try_into() else {
error!("[PACKET] failed to decode dst_mac");
return;
};
if from_sn {
if is_multi_broadcast(&dst_mac) {
eee.stats
.rx_broadcast
.fetch_add(msg_size, Ordering::Relaxed);
}
eee.stats.rx_sup.fetch_add(msg_size, Ordering::Relaxed);
eee.stats.last_sup.store(now, Ordering::Relaxed);
} else {
eee.stats.rx_p2p.fetch_add(msg_size, Ordering::Relaxed);
eee.stats.last_p2p.store(now, Ordering::Relaxed);
}
// TODO: parse the mac
debug!("got packet from sock, will send to tun");
match Ethernet2Header::from_slice(&data) {
Ok((hdr, rest)) => {
if rest.len() < 4 {
error!("payload length error");
return;
}
let crc_code = &rest[(rest.len() - 4)..rest.len()];
let rest = &rest[..(rest.len() - 4)];
let crc_hash: crc::Crc<u32> = crc::Crc::<u32>::new(&crc::CRC_32_CKSUM);
let ck = CRC_HASH.checksum(&data[..(data.len()) - 4]);
let sent_ck = u32::from_be_bytes(crc_code.try_into().unwrap());
debug!("ck = {}, sent_ck = {}", ck, sent_ck);
debug!("ip size is {}", rest.len());
let edge = get_edge();
let self_mac = edge.device_config.get_mac();
/*
if hdr.destination != self_mac && hdr.destination != BROADCAST_MAC {
error!(
"packet to [{:?}] not direct to us",
mac_to_string(&hdr.destination)
);
return;
}
*/
if hdr.ether_type == ARP {
let mut arp = ArpHdr::from_slice(&data);
let self_ip = edge.device_config.get_ip();
println!("self_ip: {:?}", self_ip.to_be_bytes());
let from_ip = ((arp.sipaddr[0] as u32) << 16) + arp.sipaddr[1] as u32;
println!("from_ip: {:?}", from_ip.to_be_bytes());
let dest_ip = ((arp.dipaddr[0] as u32) << 16) + arp.dipaddr[1] as u32;
println!("dest_ip: {:?}", dest_ip.to_be_bytes());
match arp.opcode {
ARP_REQUEST => {
// handle ARP REQUEST
debug!("got ARP REQUEST");
if arp.ethhdr.dest != [0xff; 6] {
println!("ARP REQUEST not broadcast");
return;
}
if dest_ip == self_ip {
send_arp_request(ArpRequestInfo::Set {
ip: from_ip,
mac: arp.shwaddr,
})
.await;
// target to us
arp.opcode = ARP_REPLY;
arp.dhwaddr = arp.shwaddr;
arp.shwaddr = self_mac;
arp.ethhdr.src = self_mac;
arp.ethhdr.dest = arp.dhwaddr;
arp.dipaddr = arp.sipaddr;
arp.sipaddr =
[((self_ip >> 16) & 0xffff) as u16, (self_ip & 0xffff) as u16];
let data = arp.marshal_to_bytes();
let Ok(encrypted) = aes_encrypt(key.as_slice(), &data) else {
error!("failed to encrypt arp reply");
return;
};
let data = SdlData {
is_p2p: true,
ttl: 2,
network_id: edge.network_id.load(Ordering::Relaxed),
src_mac: Vec::from(self_mac),
dst_mac: Vec::from(arp.dhwaddr),
data: encrypted,
};
let v =
encode_to_udp_message(Some(data), PacketType::Data as u8).unwrap();
println!(
"xxxx send arp reply to [{}], selfmac=[{}]",
mac_to_string(&arp.dhwaddr),
mac_to_string(&self_mac)
);
send_packet_to_net(edge, arp.dhwaddr, &v, 0).await;
// send_to_sock(edge, &v, from_sock);
// edge.sock.send(v).await;
}
}
ARP_REPLY => {
println!("got arp reply",);
println!("mac {:?} is at {:?}", arp.shwaddr, from_ip.to_be_bytes());
if dest_ip == self_ip {
send_arp_request(ArpRequestInfo::Set {
ip: from_ip,
mac: arp.shwaddr,
})
.await;
}
}
other => {
println!("unknown arp type info");
}
}
} else {
match IpHeaders::from_slice(rest) {
Ok((iphdr, _)) => {
let Some(ipv4) = iphdr.ipv4() else {
error!("not ipv4, dropping");
return;
};
let ip = u32::from_be_bytes(ipv4.0.source);
let mac = hdr.source;
if !is_multi_broadcast(&mac) {
send_arp_request(ArpRequestInfo::Set { ip, mac }).await;
}
}
Err(e) => {
error!("failed to parse ip header, dropping");
return;
}
}
println!("got ip packet");
println!("got data: {:?}", rest);
match edge.device.send(rest) {
Ok(size) => {
debug!("send to tun {} bytes", size);
}
Err(e) => {
error!("failed to send to device: {}", e.to_string());
}
}
// edge.tun.send_data_to_tun(Vec::from(hdr.1)).await;
}
}
Err(e) => {
error!("failed to parse tap packet: {}", e);
return;
}
}
*/
}
async fn send_register_ack(eee: &Node, orig_sender: &SdlanSock, reg: &SdlRegister) {
if !eee.config.allow_p2p {
debug!("Skipping REGISTER ACK as P2P is disallowed");
return;
}
let network_id = eee.network_id.load(Ordering::Relaxed);
if network_id == 0 {
error!("not authed");
return;
}
let src_mac = reg.src_mac.clone();
let ack = SdlRegisterAck {
network_id,
src_mac: Vec::from(eee.device_config.get_mac()),
dst_mac: src_mac,
};
let Ok(ack) = encode_to_udp_message(Some(ack), PacketType::RegisterACK as u8) else {
error!("failed to encode to udp message");
return;
};
let _ = send_to_sock(eee, &ack, orig_sender).await;
}
fn peer_set_p2p_confirmed(eee: &Node, src_mac: Mac, sender_sock: &SdlanSock) {
// let mut scan = eee.pending_peers.get_peer(&src_mac);
let scan = eee.pending_peers.peers.remove(&src_mac);
if let None = scan {
error!(
"failed to find sender in pending peer: {}",
sender_sock.to_string()
);
return;
}
let (_, scan) = scan.unwrap();
{
let entry = eee.known_peers.peers.entry(src_mac);
let mut scan2 = entry.or_insert(scan);
scan2.sock = sender_sock.deepcopy();
let now = get_current_timestamp();
scan2.last_p2p.store(now, Ordering::Relaxed);
scan2.last_seen.store(now, Ordering::Relaxed);
}
let mac_string = mac_to_string(&src_mac);
let sock_string = sender_sock.to_string();
info!(
"P2P connection established: {} [{}]",
&mac_string, &sock_string,
);
// eee.known_peers.insert_peer(src_mac, scan);
debug!("==> new peer: {} -> {}", &mac_string, &sock_string,);
}
pub async fn check_query_peer_info(eee: &'static Node, mac: Mac) {
let scan: Arc<EdgePeer>;
let now = get_current_timestamp();
let last_sent_query;
let mut need_send_query = false;
{
let entry = eee.pending_peers.peers.entry(mac);
let sock = SdlanSock {
family: AF_INET,
port: 0,
v4: [0; 4],
v6: [0; 16],
};
let peer = EdgePeer::new(
// mac,
0,
eee.device_config.get_net_bit(),
&sock,
&None,
now,
);
debug!("insert peer {} to pending", mac_to_string(&mac));
let val = entry.or_insert(peer);
last_sent_query = val.last_sent_query.load(Ordering::Relaxed);
if now - last_sent_query > (REGISTER_INTERVAL as u64) {
need_send_query = true;
val.last_sent_query.store(now, Ordering::Relaxed);
}
}
debug!(
"now={}, last_sent_query={}, REGISTER_INTERVAL={}",
now, last_sent_query, REGISTER_INTERVAL,
);
if need_send_query {
/*
send_register(
eee,
&eee.config.super_nodes[eee.config.super_node_index.load(Ordering::Relaxed) as usize],
&None,
)
.await;
*/
debug!("sending query for {}", mac_to_string(&mac));
register_with_local_peers(eee).await;
send_query_peer(eee, mac).await;
}
}
async fn send_query_peer(eee: &Node, dst_mac: Mac) -> Result<()> {
let network_id = eee.network_id.load(Ordering::Relaxed);
if network_id == 0 {
error!("not authed");
return Err(SDLanError::NormalError("not connected"));
}
let query = SdlQueryInfo {
dst_mac: Vec::from(dst_mac),
};
let Ok(content) = encode_to_tcp_message(
Some(query),
eee.get_next_packet_id(),
PacketType::QueryInfo as u8,
) else {
error!("failed to encode query");
return Err(SDLanError::NormalError("encode query error"));
};
let tcp_conn = get_tcp_conn();
tcp_conn.send(&content).await
}
pub async fn ping_to_sn() {
let Ok(msg) = encode_to_tcp_message::<SdlEmpty>(None, 0, PacketType::Ping as u8) else {
error!("failed to encode ping");
return;
};
debug!("ping to sn");
let tcp_conn = get_tcp_conn();
if let Err(e) = tcp_conn.send(&msg).await {
error!("failed to ping to sn: {:?}", e);
}
}
/*
pub async fn update_supernode_reg(eee: &Node) {
let now = get_current_timestamp();
let authed = eee.is_authorized();
let last_reg = eee.last_register_req.load(Ordering::Relaxed);
if !authed {
if now > (last_reg + (REGISTER_INTERVAL as u64) / 10) {
debug!("update supernode reg, fast retry");
} else {
return;
}
} else if now < (last_reg + REGISTER_INTERVAL as u64) {
return;
}
if eee.config.super_attempts.load(Ordering::Relaxed) == 0 {
eee.config
.super_attempts
.store(SUPER_ATTEMPTS_DEFAULT, Ordering::Relaxed);
error!("sup attempts = 0");
// next time, the supernode will use the new one
let node_index = eee.config.super_node_index.fetch_add(1, Ordering::Relaxed);
if node_index >= (eee.config.super_nodes.len() - 1) as u8 {
eee.config.super_node_index.store(0, Ordering::Relaxed);
}
} else {
eee.config.super_attempts.fetch_sub(1, Ordering::Relaxed);
}
if let Err(e) = eee.send_register_super().await {
error!("failed to send register_super: {}", e.as_str());
}
eee.last_register_req.store(now, Ordering::Relaxed);
register_with_local_peers(eee).await;
}
*/
pub fn form_ethernet_packet(src_mac: Mac, dst_mac: Mac, data: &[u8]) -> Vec<u8> {
let mut etherheader = Ethernet2Header::default();
etherheader.destination = dst_mac;
etherheader.ether_type = etherparse::EtherType::IPV4;
etherheader.source = src_mac;
let mut packet = Vec::with_capacity(14 + data.len() + 4);
packet.extend_from_slice(&etherheader.to_bytes()[..]);
packet.extend_from_slice(&data);
packet
}