use etherparse::ether_type::ARP; use etherparse::{Ethernet2Header, IpHeaders}; use sdlan_sn_rs::config::SDLAN_DEFAULT_TTL; use sdlan_sn_rs::utils::{ aes_encrypt, ip_to_string, is_multi_broadcast, net_bit_len_to_mask, BROADCAST_MAC, }; use std::io::{Error, ErrorKind}; use std::os::windows::process::CommandExt; use std::process::Command; use std::sync::atomic::Ordering; use std::sync::Arc; use tracing::{debug, error, info}; use wintun; use crate::get_edge; use crate::network::{ ARP_REPLY, ARP_REQUEST, ArpHdr, ArpRequestInfo, ArpResponse, DNS_IP, add_to_arp_wait_list, arp_arrived, form_ethernet_packet, generate_arp_request, send_arp_request, send_packet_to_net }; use crate::pb::{encode_to_udp_message, SdlData}; use crate::tcp::PacketType; use crate::utils::mac_to_string; use super::device::{DeviceConfig, Mode}; use super::TunTapPacketHandler; pub struct Iface { if_idx: u32, name: String, _adapter: Arc, session: Arc, } impl Iface { pub fn recv(&self, buf: &mut [u8]) -> std::io::Result { let Ok(pkt) = self.session.receive_blocking() else { return Err(Error::new(ErrorKind::Other, "failed to receive")); }; let content = pkt.bytes(); let length = content.len(); if content.len() > buf.len() { return Err(Error::new(ErrorKind::Other, "length not enough")); } for i in 0..content.len() { buf[i] = content[i]; } Ok(length) } pub fn send(&self, content: &[u8]) -> std::io::Result { let mut pkt = self .session .allocate_send_packet(content.len() as u16) .unwrap(); let buf: &mut [u8] = pkt.bytes_mut(); buf.copy_from_slice(content); self.session.send_packet(pkt); Ok(content.len()) } pub fn reload_config(&self, device_config: &DeviceConfig, network_domain: &str) { let netbit = device_config.get_net_bit(); let ip = device_config.get_ip(); if netbit == 0 || ip == 0 { error!("reload config's ip is 0"); return; } let mask = net_bit_len_to_mask(netbit); let mut default_gw = (ip & mask) + 1; if default_gw == ip { default_gw += 1; } let ip = ip_to_string(&ip); let netbit = ip_to_string(&net_bit_len_to_mask(netbit)); let mut cmd = Command::new("netsh"); debug!("name={}, addr={}, mask={}", self.name, ip, netbit); let command = cmd .creation_flags(0x08000000) .arg("interface") .arg("ip") .arg("set") .arg("address") .arg(&format!("name=\"{}\"", self.name)) .arg("source=static") .arg(&format!("addr={}", ip)) .arg(&format!("mask={}", netbit)); let res = command.output(); match res { Ok(r) => { debug!("netsh ok: [{:?}]", String::from_utf8_lossy(&r.stdout)); } Err(e) => { error!("failed to run netsh: {}", e.to_string()); } } let mut cmd = Command::new("netsh"); let command = cmd .creation_flags(0x08000000) .arg("interface") .arg("ipv4") .arg("set") .arg("subinterface") .arg(&format!("\"{}\"", self.name)) .arg(format!("mtu={}", device_config.mtu)) .arg("store=persistent"); let res = command.output(); match res { Ok(r) => { debug!("netsh2 ok: [{:?}]", String::from_utf8_lossy(&r.stdout)); } Err(e) => { error!("failed to run netsh2: {}", e.to_string()); } } let gw = ip_to_string(&default_gw); println!("gw = {}", gw); if let Err(e) = set_dns(&self.name, network_domain, &gw, self.if_idx) { println!("failed to set dns: {:?}", e); } else { println!("set dns ok"); } } } impl TunTapPacketHandler for Iface { async fn handle_packet_from_net(&self, data: &[u8], key: &[u8]) -> std::io::Result<()> { // got layer 2 frame match Ethernet2Header::from_slice(&data) { Ok((hdr, rest)) => { if rest.len() < 4 { error!("payload length error"); return Ok(()); } // let crc_code = &rest[(rest.len() - 4)..rest.len()]; // let rest = &rest[..(rest.len() - 4)]; // let crc_hash: crc::Crc = crc::Crc::::new(&crc::CRC_32_CKSUM); // let ck = CRC_HASH.checksum(&data[..(data.len()) - 4]); // let sent_ck = u32::from_be_bytes(crc_code.try_into().unwrap()); // debug!("ck = {}, sent_ck = {}", ck, sent_ck); debug!("ip size is {}", rest.len()); let edge = get_edge(); let self_mac = edge.device_config.get_mac(); if hdr.destination != self_mac && hdr.destination != BROADCAST_MAC { error!( "packet to [{:?}] not direct to us", mac_to_string(&hdr.destination) ); return Ok(()); } if hdr.ether_type == ARP { let mut arp = ArpHdr::from_slice(&data); let self_ip = edge.device_config.get_ip(); debug!("self_ip: {:?}", self_ip.to_be_bytes()); let from_ip = ((arp.sipaddr[0] as u32) << 16) + arp.sipaddr[1] as u32; debug!("from_ip: {:?}", from_ip.to_be_bytes()); let dest_ip = ((arp.dipaddr[0] as u32) << 16) + arp.dipaddr[1] as u32; debug!("dest_ip: {:?}", dest_ip.to_be_bytes()); match arp.opcode { ARP_REQUEST => { // handle ARP REQUEST debug!("got ARP REQUEST"); if arp.ethhdr.dest != [0xff; 6] { debug!("ARP REQUEST not broadcast"); return Ok(()); } if dest_ip == self_ip { send_arp_request(ArpRequestInfo::Set { ip: from_ip, mac: arp.shwaddr, }) .await; // target to us arp.opcode = ARP_REPLY; arp.dhwaddr = arp.shwaddr; arp.shwaddr = self_mac; arp.ethhdr.src = self_mac; arp.ethhdr.dest = arp.dhwaddr; arp.dipaddr = arp.sipaddr; arp.sipaddr = [((self_ip >> 16) & 0xffff) as u16, (self_ip & 0xffff) as u16]; let data = arp.marshal_to_bytes(); let Ok(encrypted) = aes_encrypt(key, &data) else { error!("failed to encrypt arp reply"); return Ok(()); }; let data = SdlData { is_p2p: true, ttl: 2, network_id: edge.network_id.load(Ordering::Relaxed), src_mac: Vec::from(self_mac), dst_mac: Vec::from(arp.dhwaddr), data: encrypted, }; let v = encode_to_udp_message(Some(data), PacketType::Data as u8) .unwrap(); debug!( "xxxx send arp reply to [{}], selfmac=[{}]", mac_to_string(&arp.dhwaddr), mac_to_string(&self_mac) ); send_packet_to_net(edge, arp.dhwaddr, &v, 0).await; // send_to_sock(edge, &v, from_sock); // edge.sock.send(v).await; } } ARP_REPLY => { debug!("mac {:?} is at {:?}", arp.shwaddr, from_ip.to_be_bytes()); if dest_ip == self_ip { send_arp_request(ArpRequestInfo::Set { ip: from_ip, mac: arp.shwaddr, }) .await; arp_arrived(from_ip, arp.shwaddr).await; } } _other => { error!("unknown arp type info"); } } } else { match IpHeaders::from_slice(rest) { Ok((iphdr, _)) => { let Some(ipv4) = iphdr.ipv4() else { error!("not ipv4, dropping"); return Ok(()); }; let ip = u32::from_be_bytes(ipv4.0.source); let mac = hdr.source; if !is_multi_broadcast(&mac) { send_arp_request(ArpRequestInfo::Set { ip, mac }).await; } } Err(_) => { error!("failed to parse ip header, dropping"); return Ok(()); } } match edge.device.send(rest) { Ok(size) => { debug!("send to tun {} bytes", size); } Err(e) => { error!("failed to send to device: {}", e.to_string()); } } // edge.tun.send_data_to_tun(Vec::from(hdr.1)).await; } } Err(e) => { error!("failed to parse tap packet: {}", e); return Ok(()); } } Ok(()) } async fn handle_packet_from_device( &self, data: Vec, encrypt_key: &[u8], ) -> std::io::Result<()> { let eee = get_edge(); let src_mac = eee.device_config.get_mac(); match IpHeaders::from_slice(&data) { Ok((iphdr, _payload)) => { let Some(ipv4hdr) = iphdr.ipv4() else { debug!("ipv6 packet ignored"); return Ok(()); }; let dstip = u32::from_be_bytes(ipv4hdr.0.destination); debug!("packet dst ip: {:?}", ipv4hdr.0.destination); let src = u32::from_be_bytes(ipv4hdr.0.source); debug!("packet src ip: {:?}", ipv4hdr.0.source); // packet should be sent to dev debug!("got {} bytes from tun", data.len()); if (!eee.config.allow_routing) && (src != eee.device_config.get_ip()) { info!("dropping routed packet"); return Ok(()); } if !eee.is_authorized() { debug!("drop tun packet due to not authed"); return Ok(()); } if dstip == DNS_IP { // println!("request for dns"); let addr = format!("{}:15353", eee.server_ip); // println!("send dns to {}", addr); if let Err(e) = eee.udp_sock_for_dns.send_to(&data, &addr).await { error!("failed to send request to 15353: {}", e); } return Ok(()); } match send_arp_request(ArpRequestInfo::Lookup { ip: dstip }).await { ArpResponse::LookupResp { mac, ip, do_arp_request, } => { if do_arp_request { add_to_arp_wait_list(dstip, data); info!( "find ip: {:?} => {:?}", src.to_be_bytes(), dstip.to_be_bytes() ); let arp_msg = generate_arp_request(src_mac, ip, eee.device_config.get_ip()); let Ok(encrypted) = aes_encrypt(&encrypt_key, &arp_msg) else { error!("failed to encrypt arp request"); return Ok(()); }; // println!("arp_msg: {:?}", arp_msg); let data = SdlData { network_id: eee.network_id.load(Ordering::Relaxed), src_mac: Vec::from(src_mac), dst_mac: Vec::from([0xff; 6]), is_p2p: true, ttl: SDLAN_DEFAULT_TTL as u32, data: encrypted, }; let data = encode_to_udp_message(Some(data), PacketType::Data as u8).unwrap(); debug!("sending arp"); // let data = marshal_message(&data); send_packet_to_net(eee, BROADCAST_MAC, &data, arp_msg.len() as u64) .await; // edge.sock.send(data).await; // println!("should send arp"); return Ok(()); } let packet = form_ethernet_packet(src_mac, mac, &data); // prepend the ether header /* let mut etherheader = Ethernet2Header::default(); etherheader.destination = mac; etherheader.ether_type = etherparse::EtherType::IPV4; etherheader.source = src_mac; let mut packet = Vec::with_capacity(14 + data.len() + 4); packet.extend_from_slice(ðerheader.to_bytes()[..]); packet.extend_from_slice(&data); */ // let crc = CRC_HASH.checksum(&packet); // packet.extend_from_slice(&crc.to_be_bytes()); let pkt_size = packet.len(); // println!("sending data with mac"); let Ok(encrypted) = aes_encrypt(&encrypt_key, &packet) else { error!("failed to encrypt packet request"); return Ok(()); }; let data = SdlData { is_p2p: true, network_id: eee.network_id.load(Ordering::Relaxed), ttl: SDLAN_DEFAULT_TTL as u32, src_mac: Vec::from(src_mac), dst_mac: Vec::from(mac), data: Vec::from(encrypted), }; let msg = encode_to_udp_message(Some(data), PacketType::Data as u8).unwrap(); let size = msg.len(); send_packet_to_net(eee, mac, &msg, pkt_size as u64).await; // let dstip = u32::from_be_bytes(ipv4hdr.0.destination); } _ => {} } } Err(e) => { error!("failed to parse ip packet: {}", e.to_string()); } } Ok(()) } } fn create_wintun(path: &str, name: &str) -> Iface { let wt = unsafe { wintun::load_from_path(path) }.expect("failed to load wintun"); let adapter = match wintun::Adapter::open(&wt, name) { Ok(a) => a, Err(_e) => wintun::Adapter::create(&wt, name, "Example", None) .expect("failed to create tun adapter"), }; let idx = adapter.get_adapter_index().expect("failed to get adapter index"); println!("idx = {}", idx); let session = Arc::new(adapter.start_session(wintun::MAX_RING_CAPACITY).unwrap()); Iface { if_idx: idx, _adapter: adapter, session, name: name.to_owned(), } } pub fn new_iface(name: &str, _mode: Mode) -> Iface { create_wintun("./wintun.dll", name) // Ok(Box::new(create_wintun("/path/to/file"))) } pub fn get_install_channel() -> String { "windows".to_owned() } pub fn set_dns(name: &str, _network_domain: &str, gw: &str, ifidx: u32) -> std::io::Result<()>{ let res = Command::new("ROUTE") .arg("ADD") .arg("100.100.100.100") .arg("MASK") .arg("255.255.255.255") .arg(gw) .arg("IF") .arg(ifidx.to_string()) .creation_flags(0x08000000) .output()?; println!("res1: {}", res.status.success()); println!("route set ok"); let res = Command::new("netsh") .arg("dnsclient") .arg("set") .arg("dnsserver") .arg(&format!("name={}", name)) .arg("source=static") .arg("address=100.100.100.100") .arg("validate=no") .creation_flags(0x08000000) .output()?; println!("res2: {}", res.status.success()); println!("netsh set ok"); Ok(()) } pub fn restore_dns() { }